Bridging scales to model reactive diffusive transport in porous media Articles uri icon

authors

  • LIU, JIANJING
  • GARCIA SALABERRI, PABLO ANGEL
  • ZENYUK, IRYNA V.

publication date

  • January 2020

start page

  • 1

end page

  • 10

issue

  • 1, 013524

volume

  • 167

International Standard Serial Number (ISSN)

  • 0013-4651

Electronic International Standard Serial Number (EISSN)

  • 1945-7111

abstract

  • Two novel scale-bridging algorithms to model reaction-diffusion transport in porous media are presented. The algorithms are based on direct numerical simulations and couple the information of a micro-scale model, which accounts for the large field of view provided by micro X-ray computed tomography (X-ray CT), and a nano-scale model, which locally resolves transport in the fine structure extracted from nano X-ray CT. The micro-scale model is discretized in the through-plane direction into a 1D grid, where effective properties and internal boundaries are determined based on the results from the nano-scale model. The validated algorithms are used to examine transport of oxygen in precious group metal-free electrodes considering both zero- and first-order kinetics. Unlike conventional methods, the results show that the effective diffusivity is not a passive property but increases in regions where the reaction-rate coefficient is large. The proposed algorithms account for the multiscale coupling of reaction-diffusion transport and material microstructure, thus improving the predictions compared to conventional methods.

subjects

  • Chemistry
  • Industrial Engineering
  • Materials science and engineering
  • Mathematics
  • Mechanical Engineering
  • Renewable Energies