A photonically-excited leaky-wave antenna array at E-band for 1-D beam steering Articles uri icon

publication date

  • May 2020

start page

  • 1

end page

  • 16

issue

  • 10(3474)

volume

  • 10

abstract

  • This manuscript reports the first leaky-wave antenna (LWA) array excited by a photomixer as well as its potential application for alignment in wireless links. The designed array is manufactured in printed circuit board (PCB) technology, works at the E-band (from 75 to 85 GHz), and provides a directive beam of about 18 dBi with a frequency scanning span of 22°. The antenna element consists of a microstrip line periodically loaded with stubs, and it has been designed employing a hybrid approach combining full-wave simulations and transmission line theory. This approach enables the optimization of the periods when the open-stopband of the LWA is mitigated or removed at the frequency of broadside emission. The proposed antenna was first tested using a ground signal ground (GSG) probe; the measured return loss and radiation patterns of the fabricated prototype were in good agreement with full-wave simulations. Then, the LWA array was integrated with the photomixer chip using conductive epoxy threads. Measurements of the radiated power yielded a maximum of 120 µW at 80.5 GHz for a 9.8 mA photocurrent. Finally, the antenna was used in a 25 cm wireless link, obtaining a 2.15 Gbps error-free data rate.

subjects

  • Electronics

keywords

  • beam scanning; beam steering; e-band; epoxy bonding; leaky-wave antenna; pcb antenna; photomixer; photonic antenna; probe de-embedding; rf choke