Forecasting Multiple Time Series With One-Sided Dynamic Principal Components Articles uri icon

publication date

  • February 2019

start page

  • 1683

end page

  • 1694

issue

  • 528

volume

  • 114

International Standard Serial Number (ISSN)

  • 0162-1459

Electronic International Standard Serial Number (EISSN)

  • 1537-274X

abstract

  • We define one-sided dynamic principal components (ODPC) for time series as linear combinations of the present and past values of the series that minimize the reconstruction mean squared error. Usually dynamic principal components have been defined as functions of past and future values of the series and therefore they are not appropriate for forecasting purposes. On the contrary, it is shown that the ODPC introduced in this article can be successfully used for forecasting high-dimensional multiple time series. An alternating least-squares algorithm to compute the proposed ODPC is presented. We prove that for stationary and ergodic time series the estimated values converge to their population analogs. We also prove that asymptotically, when both the number of series and the sample size go to infinity, if the data follow a dynamic factor model, the reconstruction obtained with ODPC converges in mean square to the common part of the factor model. The results of a simulation study show that the forecasts obtained with ODPC compare favorably with those obtained using other forecasting methods based on dynamic factor models. Supplementary materials for this article are available online.

keywords

  • dimensionality reduction; dynamic factor models; high-dimensional time series