Power Allocation and Capacity Analysis for FBMC-OQAM With Superimposed Training Articles uri icon

publication date

  • April 2019

start page

  • 46968

end page

  • 46976

volume

  • 7

International Standard Serial Number (ISSN)

  • 2169-3536

abstract

  • Superimposed training (ST) is a semiblind channel estimation technique, proposed for orthogonal frequency division multiplexing (OFDM), where training sequences are added to data symbols, avoiding the use of dedicated pilot-subcarriers, and increasing the available bandwidth compared with pilot symbol assisted modulation (PSAM). Filter bank multicarrier offset quadrature amplitude modulation (FBMC-OQAM) is a promising waveform technique considered to replace the OFDM, which takes advantage of well-designed filters to avoid the use of cyclic prefix and reduce the out-band-emissions. In this paper, we provide the expressions of the average channel capacity of the FBMC-OQAM combined with either PSAM or ST schemes, considering imperfect channel estimation and the presence of the pilot sequences. In order to compute the capacity expression of our proposal, ST-FBMC-OQAM, we analyze the channel estimation error and its variance. The average channel capacity is deduced considering the noise, data interference from ST, and the intrinsic self-interference of the FBMC-OQAM. Additionally, to maximize the average channel capacity, the optimal value of data power allocation is also obtained. The simulation results confirm the validity of the capacity analysis and demonstrate the superiority of the ST-FBMC-OQAM over existing proposals.

keywords

  • channel estimation; data interference; fbmc; superimposed training