Electronic International Standard Serial Number (EISSN)
2469-9969
abstract
In an effective medium description of acoustic metamaterials, the Willis coupling plays the same role as the bianisotropy in electromagnetism. Willis media can be described by a constitutive matrix composed of the classical effective bulk modulus and density and additional cross-coupling terms defining the acoustic bianisotropy. Based on a unifying theoretical model, we unite the properties of acoustic Willis coupling with PT-symmetric systems under the same umbrella and show in either case that an exceptional point hosts a remarkably pronounced scattering asymmetry that is accompanied by one-way zero reflection for sound waves. The analytical treatment is backed up by experimental input in asymmetrically side-loaded waveguides showing how gauge transformations and loss biasing can embrace both Willis materials and non-Hermitian physics to tailor unidirectional reflectionless acoustics, which is appealing for purposeful sound insulation and steering.