Electronic International Standard Serial Number (EISSN)
1573-1375
abstract
A multi-stratum design is a useful tool for industrial experimentation, where factors that have levels which are harder to set than others, due to time or cost constraints, are frequently included. The number of different levels of hardness to set defines the number of strata that should be used. The simplest case is the split-plot design, which includes two strata and two sets of factors defined by their level of hardness-to-set. In this paper, we propose a novel computational algorithm which can be used to construct optimal multi-stratum designs for any number of strata and up to six optimality criteria simultaneously. Our algorithm allows the study of the entire Pareto front of the optimization problem and the selection of the designs representing the desired trade-off between the competing objectives. We apply our algorithm to several real case scenarios and we show that the efficiencies of the designs obtained present experimenters with several good options according to their objectives.