Electronic International Standard Serial Number (EISSN)
1873-2577
abstract
Most previous models of solid particle erosion have assumed the abrasives to be rigid, as opposed to deforming, and have largely ignored the effect of particle fracture and fragmentation. However, since particle fracture dissipates kinetic energy and may lead to secondary impact, it can affect the resulting erosion rate and associated mechanisms. In this paper, double pulsed laser shadowgraphy was used in order to record, for the first time, the impact, fracture, and rebound of 363 mu m SiC abrasive particles in a high speed air jet impacting an Al6061-T6 plate at incident velocities between 78 and 123 m/s. The impact and fracture of the abrasives was simulated using an Element Free Galerkin (EFG) formulation with a Johnson-Holmquist material model for the SiC particles, and smoothed particle hydrodynamics with a Johnson-Cook material model for the target.