Assessment of secondary bubble formation on a backward-facing step geometry Articles uri icon

publication date

  • July 2016

issue

  • 7 (074106)

volume

  • 28

International Standard Serial Number (ISSN)

  • 1070-6631

Electronic International Standard Serial Number (EISSN)

  • 1089-7666

abstract

  • Flow visualization experiments and numerical simulations were performed on a narrow three-dimensional backward-facing step (BFS) flow with the main objective of characterizing the secondary bubble appearing at the top wall. The BFS has been widely studied because of its geometrical simplicity as well as its ability to reproduce most of the flow features appearing in many applications in which separation occurs. A BFS test rig with an expansion ratio of 2 and two aspect ratios (AR = 4 and AR = 8) was developed. Tests were performed at range of Reynolds numbers ranging from 50 to 1000; visualization experiments provided a qualitative description of secondary bubble and wall-jet flows. Large eddy simulations were carried out with two different codes for validation. Numerical solutions, once validated with experimental data from the literature, were used to acquire a deeper understanding of the experimental visualizations, to characterize the secondary bubble as a function of the flow variables (Reynolds and AR) and to analyze the effect of the secondary bubble on primary reattachment length. Finally, to decouple the sidewall effects due to the non-slip condition and the intrinsic flow three-dimensionality, numerical experiments with free-slip conditions over the sidewalls were computed. The main differences were as follows: When the non-slip condition is used, the secondary bubble appears at a Reynolds number of approximately 200, increases with the Reynolds number, and is limited to a small part of the span. This recirculation zone interacts with the wall-jets and causes the maximum and minimum lengths in the reattachment line of the primary recirculation. Under free slip conditions, the recirculation bubble appears at a higher Reynolds number and covers the entire channel span. Published by AIP Publishing.

subjects

  • Physics

keywords

  • laminar-flow; numerical simulations; recirculating-flows; reattachment; instability; dynamics; adjacent; channel; vortex; model