Hydrophobicity attainment and wear resistance enhancement on glass substrates by atmospheric plasma-polymerization of mixtures of an aminosilane and a fluorocarbon Articles uri icon



publication date

  • August 2015

start page

  • 325

end page

  • 335


  • 347

International Standard Serial Number (ISSN)

  • 0169-4332

Electronic International Standard Serial Number (EISSN)

  • 1873-5584


  • Mixtures of different proportions of two liquid precursors were subjected to plasma-polymerization by a non-thermal atmospheric jet plasma system in a search for a coating that achieves a hydrophobic character on a glass substrate and enhances its wear resistance. 1-Perfluorohexene (PFH) was chosen as a low-surface-energy precursor to promote a hydrophobic character. Aminopropyltriethoxysilane (APTES) was chosen for its contribution to the improvement of wear resistance by the formation of siloxane bonds. The objective of this work was to determine which of the precursors' mixtures that were tested provides the coating with the most balanced enhancement of both hydrophobicity and wear resistance, given that coatings deposited with fluorocarbon-based precursors such as PFH are usually low in resistance to wear and coatings deposited with APTES are generally hydrophilic. The coatings obtained were analyzed by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Fourier Transform Infra-Red (FTIR) spectroscopy, X-ray Photoelectron Spectroscopy (XPS), static Water Contact Angle (WCA) measurements, tribological ball-on-disc tests and contact profilometry. A relationship between the achievement of a hydrophobic character and the modifications to roughness and surface morphology and the incorporation of fluorocarbon groups in the surface chemistry was observed. Also, it was seen that the wear resistance was influenced by the SiOSi content of the coatings. In turn, the SiOSi content appears to be directly related to the percentage of APTES used in the mixture of precursors. The best conjunction of hydrophobicity and wear resistance in this work was found in the sample that was coated using a mixture of APTES and PFH in proportions of 75 and 25%, respectively. Its WCA (100.2 perpendicular to 7.5 degrees) was the highest of all samples that were measured and more than three times that of the uncoated glass (31 perpendicular to 0.7 degrees).


  • hydrophobicity; wear resistance; aminopropyltriethoxysilane; perfluorohexene; non-thermal atmospheric jet plasma; plasma-polymerization