Entanglement in low-energy states of the random-hopping model Articles uri icon

authors

  • RAMIREZ, GIOVANNI
  • RODRIGUEZ LAGUNA, JAVIER
  • SIERRA, GERMAN

publication date

  • July 2014

start page

  • 1

end page

  • 26

issue

  • 7

volume

  • 2014

International Standard Serial Number (ISSN)

  • 1742-5468

abstract

  • We study the low-energy states of the 1D random-hopping model in a strongly disordered regime. The entanglement structure is shown to depend solely on the probability distribution for the length of the effective bonds P(lb), whose scaling and finite-size behavior are established using renormalizationgroup arguments and a simple model based on random permutations. Parity oscillations are absent in von Neumann entropy with periodic boundary conditions, but appear in the higher moments of the distribution, such as the variance. The particle-hole excited states leave the bond structure and the entanglement untouched. Nonetheless, particle addition or removal deletes bonds and leads to an effective saturation of entanglement at an effective block size given by the expected value for the longest bond. © 2014 IOP Publishing Ltd and SISSA Medialab srl.

subjects

  • Mathematics
  • Physics

keywords

  • disordered systems (theory); entanglement in extended quantum systems (theory); ladders and planes (theory); renormalisation group; spin chains