Order monotonic solutions for generalized characteristic functions Articles uri icon

authors

  • VAN DEN BRINK, RENE
  • GONZALEZ ARANGUEENA, ENRIQUE
  • MANUEL, CONRADO
  • POZO JUAN, MONICA

publication date

  • November 2014

start page

  • 786

end page

  • 796

issue

  • 3

volume

  • 238

International Standard Serial Number (ISSN)

  • 0377-2217

Electronic International Standard Serial Number (EISSN)

  • 1872-6860

abstract

  • Generalized characteristic functions extend characteristic functions of 'classical' TU-games by assigning a real number to every ordered coalition being a permutation of any subset of the player set. Such generalized characteristic functions can be applied when the earnings or costs of cooperation among a set of players depend on the order in which the players enter a coalition. In the literature, the two main solutions for generalized characteristic functions are the one of Nowak and Radzik (1994), shortly called NR-value, and the one introduced by Sanchez and Bergantinos (1997), shortly called SB-value. In this paper, we introduce the axiom of order monotonicity with respect to the order of the players in a unanimity coalition, requiring that players who enter earlier should get not more in the corresponding (ordered) unanimity game than players who enter later. We propose several classes of order monotonic solutions for generalized characteristic functions that contain the NR-value and SB-value as special (extreme) cases. We also provide axiomatizations of these classes. (C) 2014 Elsevier B.V. All rights reserved.

keywords

  • game theory; cooperative tu-game; generalized characteristic function; order monotonicity; shapley value; permission structures; function form; games; axiomatizations; situations; expression