Quantifying the Evolutionary Self-Structuring of Embodied Cognitive Networks Articles uri icon



publication date

  • March 2013

start page

  • 267

end page

  • 289


  • 2


  • 19

International Standard Serial Number (ISSN)

  • 1064-5462

Electronic International Standard Serial Number (EISSN)

  • 1530-9185


  • We outline a possible theoretical framework for the quantitative modeling of networked embodied cognitive systems. We note that: (1) information self-structuring through sensory-motor coordination does not deterministically occur in n vector space, a generic multivariable space, but in SE(3), the group structure of the possible motions of a body in space; (2) it happens in a stochastic open-ended environment. These observations may simplify, at the price of a certain abstraction, the modeling and the design of self-organization processes based on the maximization of some informational measures, such as mutual information. Furthermore, by providing closed form or computationally lighter algorithms, it may significantly reduce the computational burden of their implementation. We propose a modeling framework that aims to give new tools for the design of networks of new artificial self-organizing, embodied, and intelligent agents and for the reverse engineering of natural networks. At this point, it represents largely a theoretical conjecture, and must still to be experimentally verified whether this model will be useful in practice.