On W-1,W-p-convergence of Fourier-Sobolev expansions Articles
Overview
published in
publication date
- February 2012
start page
- 594
end page
- 599
volume
- 398
Digital Object Identifier (DOI)
International Standard Serial Number (ISSN)
- 0022-247X
Electronic International Standard Serial Number (EISSN)
- 1096-0813
abstract
- Let {q(n)}(n >= 0) be the sequence of polynomials orthonormal with respect to the Sobolev inner product < f, g > s := f(-1)(1)f(x)fg(x)w(0)(x)dx + f(-1)(1)f'(x)g'(x)w(1)(x)dx, where w(0) is an element of L-infinity ([-1, 1]) and w(1) is a weight of Kufner-Opic type. We study necessary and/or sufficient conditions for the convergence in the W-1,W-p([-1, 1], (w(0), w(1))) norm of the Fourier expansion in terms of {q(n))(n >= 0), with 1 < p < infinity. (C) 2012 Elsevier Inc. All rights reserved.