Szego and Para-Orthogonal Polynomials On The Real Line: Zeros And Canonical Spectral Transformations Articles uri icon

authors

  • CASTILLO RODRIGUEZ, KENIER
  • Ranga, Alagacone Sri
  • Lamblem, Regina Litz
  • Rafaeli, Fernando Rodrigo

publication date

  • October 2012

start page

  • 2229

end page

  • 2249

volume

  • 81

international standard serial number (ISSN)

  • 0025-5718

electronic international standard serial number (EISSN)

  • 1088-6842

abstract

  • We study polynomials which satisfy the same recurrence relation as the Szego polynomials, however, with the restriction that the (reflection) coefficients in the recurrence are larger than one in modulus. Para-orthogonal polynomials that follow from these Szego polynomials are also considered. With positive values for the reflection coefficients, zeros of the Szego polynomials, para-orthogonal polynomials and associated quadrature rules are also studied. Finally, again with positive values for the reflection coefficients, interlacing properties of the Szego polynomials and polynomials arising from canonical spectral transformations are obtained.