Electronic International Standard Serial Number (EISSN)
1089-7550
abstract
Several models exist for calculating superconducting repulsion forces in the Meissner state that are based on the method of images. The method of images, however, is limited to a small number of geometrical configurations that can be solved exactly, and the physical interpretation of the method is under discussion. A general local model based on the London equations and Maxwell's equations has been developed to describe the mechanics of the superconductor-permanent magnet system. Due to its differential form, this expression can be easily implemented in a finite elements analysis and, consequently, is easily applicable to any shape of superconductor in the Meissner state. It can solve both forces and torques. This paper reports different experiments undertaken in order to test the model's validity. The vertical forces and the angle of equilibrium between a magnet and a superconductor were measured, and a positive agreement between the experiments and theoretical calculations was found.
Classification
keywords
superconductors; equations; magnetis; magnetism; finite element method