Electronic International Standard Serial Number (EISSN)
1090-2716
abstract
A block tridiagonal matrix is factored with minimal fill-in using a cyclic reduction algo- rithm that is easily parallelized. Storage of the factored blocks allows the application of the inverse to multiple right-hand sides which may not be known at factorization time. Scalability with the number of block rows is achieved with cyclic reduction, while scalabil- ity with the block size is achieved using multithreaded routines (OpenMP, GotoBLAS) for block matrix manipulation. This dual scalability is a noteworthy feature of this new solver, as well as its ability to efficiently handle arbitrary (non-powers-of-2) block row and pro- cessor numbers. Comparison with a state-of-the art parallel sparse solver is presented. It is expected that this new solver will allow many physical applications to optimally use the parallel resources on current supercomputers. Example usage of the solver in mag- neto-hydrodynamic (MHD), three-dimensional equilibrium solvers for high-temperature fusion plasmas is cited.